Semantic Mapping Using Automatic Word Alignment and Semantic Role Labeling
نویسندگان
چکیده
To facilitate the application of semantics in statistical machine translation, we propose a broad-coverage predicate-argument structure mapping technique using automated resources. Our approach utilizes automatic syntactic and semantic parsers to generate Chinese-English predicate-argument structures. The system produced a many-to-many argument mapping for all PropBank argument types by computing argument similarity based on automatic word alignment, achieving 80.5% F-score on numbered argument mapping and 64.6% F-score on all arguments. By measuring predicate-argument structure similarity based on the argument mapping, and formulating the predicate-argument structure mapping problem as a linear-assignment problem, the system achieved 84.9% F-score using automatic SRL, only 3.7% F-score lower than using gold standard SRL. The mapping output covered 49.6% of the annotated Chinese predicates (which contains predicateadjectives that often have no parallel annotations in English) and 80.7% of annotated English predicates, suggesting its potential as a valuable resource for improving word alignment and reranking MT output.
منابع مشابه
برچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملTransferring Semantic Roles Using Translation and Syntactic Information
Our paper addresses the problem of annotation projection for semantic role labeling for resource-poor languages using supervised annotations from a resource-rich language through parallel data. We propose a transfer method that employs information from source and target syntactic dependencies as well as word alignment density to improve the quality of an iterative bootstrapping method. Our expe...
متن کاملAutomatic Construction of Persian ICT WordNet using Princeton WordNet
WordNet is a large lexical database of English language, in which, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets). Each synset expresses a distinct concept. Synsets are interlinked by both semantic and lexical relations. WordNet is essentially used for word sense disambiguation, information retrieval, and text translation. In this paper, we propose s...
متن کاملJointly Modeling WSD and SRL with Markov Logic
Semantic role labeling (SRL) and word sense disambiguation (WSD) are two fundamental tasks in natural language processing to find a sentence-level semantic representation. To date, they have mostly been modeled in isolation. However, this approach neglects logical constraints between them. We therefore exploit some pipeline systems which verify the automatic all word sense disambiguation could ...
متن کامل